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ABSTRACT

Increasing drug resistance in bacteria and cancer has alarmed the rings to develop 
newer, safer, and effective treatments against them. In a quest to identify new leads, 
we synthesized some naphthalene-based pyrimidines and evaluated their antibacterial 
and cytotoxic potential. The molecules were synthesized through the condensation of 
naphthalene-based chalcone with guanidine hydrochloride in methanol under reflux 
conditions. The antibacterial evaluation led to the identification of compound 5b as the 
most potent molecule of the series. Compound 5c was found to be the most potent 
against colo-205, while 5a displayed the highest activity against A-549.
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of biologically active molecules, which includes anticancer, antiviral, 
antitumor, anti-inflammatory, antimicrobial, cyclin-dependent 
kinase inhibitors, tumor necrosis factors-α inhibition, PI-3 kinase 
inhibitor, Akt kinase inhibitors, and cytokine inhibitors.[12-16] Moreover, 
chalcones and their derivatives are recognized as potential biologically 
active compounds, including a wide array of biological properties such 
as antioxidant, cytotoxic, anticancer, antimicrobial, antiprotozoal, 
antiulcer, antihistaminic, and anti-inflammatory activities.[17-25]

Combining two pharmacologically important pharmacophores has 
been proven advantageous for developing a new drug molecule. In 
an attempt to obtain better and efficacious molecules against cancer, 
we designed and synthesized some new naphthalene-based pyrimidine 
derivatives and evaluated them for their possible antibacterial and 
anticancer activity.

RESULTS AND DISCUSSION

Chemistry

Solvents and organic reagents were purchased from Sigma-Aldrich, 
Hi-media, and Loba-Chemie (India) and were used without further 
purification. Thin-layer chromatography was performed using 
commercially available pre-coated plates (Merck Kieselgel 60 F254 
silica). Spots were visualized under ultraviolet light and iodine 
chamber. Mass spectra were recorded on gas chromatography–mass 
spectrometry (electrospray ionization [ESI]). Infrared (IR) spectra 
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INTRODUCTION

Cancer is the most dangerous disease in which abnormal cells divide 
uncontrollably. This can result in tumors, damage to the immune 
system, and destroy the body tissues.[1] Despite various anticancer 
drugs available, the development of new anticancer agents for the 
treatment of cancer without side effects is a significant goal for 
scientists.[2-4] Moreover, the increase in multi-drug resistant pathogenic 
bacteria presents one of the most serious threats to human health 
globally, threatening to render application of numerous medical 
advances such as surgery and chemotherapy so life-threatening as to 
be impractical. Resistance has emerged to all clinical antibiotics, and 
the perceived low profitability of antibiotic development has resulted 
in an insufficient pipeline of new therapeutics.[5-9] The basic physiology 
of cancer is dissipated in Figure 1.

Traditional chemotherapeutic agents are cytotoxic to both cancer and 
normal cells. They usually cause oxidative stress that evokes apoptosis 
without selectivity leading to severe and sometimes life-threatening 
effects. Emerging drug resistance in cancers is alarming; the rings for 
developing new treatment and drug molecules.[10,11] Pyrimidine and 
its derivatives are prominent core structure present in a large variety 
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(TMS) (δ = 0) are used as an internal standard. The chemical shifts 
are reported in parts per million (δ) downfield from the signal of 
TMS added to the deuterated solvent. Spin multiplicities are given 
as s (singlet), b (broad), d (doublet), dd (double doublet), t (triplet), 
q (quartet), or m (multiplet). Microanalyses were performed on a 
Perkin-Elmer 240 CHN elemental analyzer. Melting points were 
recorded with the Stuart SMP30 melting point apparatus and are 
uncorrected.

A series of substituted naphthalene-based pyrimidine derivatives were 
prepared using solution-phase chemistry. The intermediate chalcones 
(3a–e) were synthesized through Claisen-Schmidt condensation 
of naphthyl ketone (1) with substituted aryl aldehydes (2). The 
intermediated obtained was treated with guanidine hydrochloride (4) 
under reflux conditions to obtain the required pyrimidine derivative 
[5a-e, Scheme 1]. The IR spectra displayed two characteristic 
peaks primary amine group at a value of 3507 cm−1–3461 cm−1 
(N-H asymmetrical stretching) and peak at 3270 cm−1–3297 cm−1 
characterized as symmetrical stretching of N-H group. The PNMR 
spectra showed a characteristic at 8.21–8.28 ppm which resembles 
to the aromatic proton of the naphthalene nucleus. The other protons 
were at the expected chemical shifts. Further, the mass and elemental 
analysis supported their structures. The physical parameters of 
pyrimidines have been summarized in Table 1.

 Biological evaluation

Antimicrobial evaluation
All the synthesized compounds were evaluated against Staphylococcus 
aureus (Gram-positive) and Escherichia coli (Gram-negative) using 
the disk diffusion method and ciprofloxacin was used as standard 
drug. The activity was measured as a zone of inhibition. All results 
were obtained in triplicate. None the compound was found equal of 
more active than the ciprofloxacin. The result revealed compounds 
5b (having 2,4 diOCH3) as the most active of the series displaying 
zone of inhibition of 12.5 mm and 16.5 mm against S. aureus and 
E. coli, respectively. An increase in the number of the methoxy group 
in compound 5c (2,4,5-tri OCH3) led to the loss of activity against 
S. aureus and gave the highest activity against E. coli. The substitution Figure 1: Basic physiology of cancer

(KBr pellets) were recorded on a Thermo Fourier transform IR 
spectrophotometer. 1H and 13C nuclear magnetic resonance (NMR) 
of the compounds were recorded on the JEOL or Bruker Advance II 
instrument at 300 MHz frequency, in CDCl3 and tetramethylsilane 

Scheme 1: Synthesis of naphthalene-based pyrimidine derivatives
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with electron-withdrawing halogen in compound 5d and N-(CH3)2 in 
compound 5e led to weak inhibitory activity against both pathogens. 
The result obtained is summarized in Table 2.

Minimum inhibitory concentration (MIC)

MIC of the synthesized compounds was determined by serial dilution 
method at 125, 62.5, 31.25, 15.6, 7.8, and 3.9 µg/mL concentrations 
and ciprofloxacin was used as standard drug. The result revealed that 
none of the compounds was found potent as that of standard drug. 
Compound 5b was found to the most potent from the series, displaying 
MIC of 7.8 µg/mL and 15.6 µg/mL against S. aureus and E. coli. The 
results obtained are summarized in Table 3.

Cytotoxic evaluation
Cytotoxicity of the synthesized compounds was evaluated against two 
human cell lines, that is, Colo-259 and A-549, using 96 well plate 
methods. Compound 5b was found to have the highest cytotoxicity 
against both of the cell lines. None the compound was found to be 
equipotent as that of standard drug. Compound 5c was found to be 
the most potent against colo-205, while 5a displayed the highest 
activity against A-549. The other results are summarized in Table 4.

EXPERIMENTAL

General synthetic procedure of pyrimidine 
derivatives

1-acetylnaphthalene (1, 2 g, 0.011 mol) was dissolved in methanol 
(25 ml) in 100 ml round bottom flask. To the solution, substituted 
benzaldehyde (2, 0.011 mol) followed by 10% methanolic NaOH 
solution (5 ml) was added. The reaction mixture was kept in stirred 
conditions under ice-cold conditions. The progress of the reaction was 
monitored by thin-layer chromatography (TLC) (20% ethyl acetate in 
hexane). The reaction mixture was poured into ice; precipitated solid 
was filtered and recrystallized from methanol. A mixture of chalconoid 
(3a-e, 0.01 mol), guanidine hydrochloride (4, 0.02 mol), and NaOH 
(0.02 mol) was refluxed in ethanol (25 mL) for 6 h until the reactants 
disappeared. After completion of the reaction, as indicated by the TLC, 
the reaction mixture was quenched on ice mixture. Precipitated solid 
was filtered and purified by column chromatography or recrystallized 
from methanol.

4-(2-methoxyphenyl)-6-(naphthalen-1-yl)-pyrimidin-2-
amine (5a)
Yellow crystals, 40% yield, I.R (νmax, KBr, cm−1): 3487 (N-H 
asymmetric str), 3270 (N-H symmetric str), 3170 (N-H bend 
overtone), 3002 (aromatic C-H str), 2918 (aliphatic C-H str), 

1640(C=N str), 1585 (N-H bend), 1456 (aromatic C=C str), 1090 
(C-N str), 1HNMR (300MHz, CDCl3, δ, TMS=0) : δ = 8.28 (1H, d, 
J = 8.1Hz), 7.99 (1H, d, J = 8.4Hz), 7.92 (1H, dd, J = 7.2Hz), 7.81 
(1H, d, J = 8.1Hz), 7.56–7.33 (5H, m), 7.25 (1H, s), 6.88 (2H, m), 
5.25 (2H, s), 3.95 (3H, s), ESI-MS for C21H17N3O: Calculated [M+]: 
327.27, observed [M+]: 327.

4-(2,4-dimethoxyphenyl)-6-(naphthalen-1-yl)-pyrimidin-
2-amine (5b)
White crystals, 40% yield, I.R (νmax, KBr, cm−1) : 3507 (N-H 
asymmetric str), 3288 (N-H symmetric str), 3147 (N-H bend 
overtone), 3004 (aromatic C-H str), 2907 (aliphatic C-H str), 1629 
(C=N str), 1573 (N-H bend), 1450 (aromatic C=C str), 1113 (C-N 
str), 1H NMR (300 MHz, CDCl3, δ, TMS = 0): δ = 8.29 (1H, d, J 
= 8.1Hz), 7.99(1H, d, J = 8.4Hz), 7.92 (1H, d, J = 8.1Hz), 7.91 
(1H, d, J = 8.1Hz), 7.68 (1H, d, J = 8.1Hz), 7.58–7.49 (4H, m), 

Table 1: Physical data for synthesized compounds
S. No. Chemical formula Melting point CHN
5a C21H17N3O 120-122°C Calculated: C 77.04; H 5.23; N 12.84; Observed: C 76.98; H, 5.30, N 12.84. 
5b C22H19N3O2 124–126°C Calculated: C 73.93; H 5.36; N 11.76; Observed: C 73.90; H 5.35.; N 11.76.
5c C23H21N3O3 128–130°C Calculated: C 71.30; H 5.46; N 10.85; Observed: C 71.25; H 5.40.; N 10.96.
5d C20H13Cl2N3 124–126°C Calculated: C 65.59; H 3.58; N 11.47, Observed: C 65.50; H 3.60; N 11.47 
5e C22H20N4 130–132°C Calculated: C 77.62; H 5.92; N, 16.46, Observed: C 77.65; H 6.00; N 16.39

Table 2: Zone of inhibition data of synthesized compounds
Compound S. aureus E. coli
5a 10±0.7 9.5±0.7
5b 12.5±0.7 16.5±0.7
5c - 19±0.9
5d 9±1.1 8±1.1
5e 9±0.8 11±1.4
Ciprofloxacin 24±0.4 30±0.7
DMSO - -

S. aureus: Staphylococcus aureus, E. coli: Escherichia coli, DMSO: Dimethyl 
sulfoxide

Table 3: MIC of synthesized compounds
Compound (µg/mL) S. aureus E. coli
5a 31.25 125
5b 7.8 15.6
5c 62.5 31.25
5d 62.5 62.5
5e 62.5 125
Ciprofloxacin 0.25 0.12
S. aureus: Staphylococcus aureus, E. coli: Escherichia coli, MIC: Minimum inhibitory 
concentration

Table 4: Cytotoxic evaluation of synthesized compounds
Compound Cell lines (IC50, µM/mL)

Colo-205 A-549
5a 49.34 40.23
5b 76.38 79.24
5c 42.23 54.45
5d 50.54 49.56
5e 47.28 49.62
Docetaxel 22.29 19.92
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6.64 (1H, dd, J = 2.4, 8.1Hz), 6.53 (1H, d, J = 2.4Hz), 5.19 (2H, s), 
3.87 (3H, s), 3.84 (3H, s), ESI-MS for C22H19N3O2,: Calculated [M+]: 
357.14, observed [M+]: 357.

4-(2,4,5-trimethoxyphenyl)-6-(naphthalen-1-yl)-
pyrimidin-2-amine (5c)
Yellow crystals, 60% yields, I.R (νmax, KBr, cm−1): 3488 (N-H 
asymmetric str), 3290 (N-H symmetric str), 3180 (N-H bend 
overtone), 3010 (aromatic C-H str), 2958 (aliphatic C-H str), 1626 
(C=N str), 1590 (N-H bend), 1470 (aromatic C=C str), 1090 (C-N 
str), 1H NMR (300MHz, CDCl3, δ, TMS = 0) : δ = 8.21 (1H, d, 
J = 8.1 Hz), 7.96 (1H, d, J = 8.4 Hz), 7.91 (1H, dd, J = 7.2Hz), 
7.84 (1H, d, J = 8.1Hz), 7.68–7.58 (3H, m), 7.32 (1H, s), 6.78 (1H, 
s), 6.42 (1H, s), 5.19 (2H, s), 3.95 (9H, s), ESI-MS for C23H21N3O3,,: 
Calculated [M+]: 388.56, observed [M+]: 388.

4-(2,3-dichlorophenyl)-6-(naphthalen-1-yl)-pyrimidin-2-
amine (5d)
Yellow crystals, 62% yields, I.R (νmax, KBr, cm−1) : 3471 (N-H 
asymmetric str), 3297 (N-H symmetric str), 3162 (N-H bend 
overtone), 3044 (aromatic C-H str), 1641 (C=N str), 1581 (N-H 
bend), 1457 (C=C aromatic str), 1052 (C-N str), 775 (C-Cl str), 1H 
NMR (300 MHz, CDCl3, δ, TMS = 0): δ = 8.28 (1H, d, J = 8.0Hz), 
7.95 (1H, d, J = 8.4Hz), 7.92 (1H, d, J = 8.4Hz), 7.69 (1H, d, 
J=7.2Hz), 7.58–7.52 (5H, m), 7.34 (1H, t, J = 8.0Hz), 7.21 (1H, 
s), 5.28 (2H, s), ESI-MS for C20H13Cl2N3,: Calculated [M+]: 365.10, 
observed [M+]: 365.

4-(4-(dimethyamino)phenyl)-6-(naphthalen-1-yl)-
pyrimidin-2-amine (5e)
Yellow crystals, 60% yields, I.R (νmax, KBr, cm-1) : 3467 (N-H 
asymmetric str), 3286 (N-H symmetric str), 3154 (N-H bend 
overtone), 3010 (aromatic C-H str), 2910 (aliphatic C-H str), 1631 
(C=N str), 1577 (N-H bend), 1444 (aromatic C=C str), 1192 (C-N 
str), 1H NMR (300 MHz, CDCl3, δ, TMS = 0): δ = 8.21 (1H, d, 
J = 8.2Hz), 8.00 (2H, d, J = 8.8Hz), 7.93–7.89 (2H, d, J = 7.6Hz), 
7.66 (1H, d, J = 8Hz), 7.57–7.47 (4H, m), 6.76 (2H, d, J = 8.2 Hz), 
5.13 (2H,s), 3.04 (6H,s), ESI-MS for C22H20N4,: Calculated [M+]: 
340.26, observed [M+]: 340.

Antibacterial assay of synthesized compounds

Synthesized compounds were assessed for their antibacterial activity 
against five pathogenic microbial strains, S. aureus (MTCC 96), E. coli 
(MTCC 82), and by disk diffusion method. The standard microbial 
strains were procured from the Institute of Microbial Technology, 
Chandigarh, India. The antibacterial activity of synthetics was 
determined by observing the zone of inhibition in comparison 
to standard antibiotic (ciprofloxacin) disk. Test compounds were 
dissolved in dimethylsulfoxide (DMSO) to make a stock solution of 
1 mg/ml. The fresh subculture of strains Luria Bertani Broth was 
spread over sterile assay medium (Nutrient Agar) at 40–45°C in Petri 
plates and allowed to stand for 30 min. Previously marked sterile paper 
disks (8 mm diameter) were placed on the surface of inoculated agar 
plates and 30 µL of each compound was pipetted onto the disks. The 
Petri plates were kept aside for 1 h and then incubated at 37°C for 24 h 

and the zone of inhibition was measured. Antimicrobial activity was 
determined in triplicates and DMSO was used as a negative control.

MIC

MIC of compounds was calculated using the serial dilution method. 
Different dilutions (125, 62.5, 31.25, 15.6, 7.8, and 3.9 µg/mL) of 
all selected compounds were prepared in DMSO. Five milliliters of 
nutrient broth was taken in previously marked test tubes and 100 µL 
of microbial suspension was added to these test tubes. One milliliter 
of different concentrations of compounds was added in test tubes and 
tubes were kept in an incubator at 37°C for 24 h and were viewed 
for assessing MIC of compounds against different test organisms. The 
concentration showing no growth was considered to be MIC of the 
respective compound against that strain.

Cytotoxic evaluation of synthesized compounds

The cytotoxicity of various drug solutions was determined by 
tetrazolium-based colorimetric assay (3-(4, 5-dimethylthiazol-2-yl) 
2, 5 diphenyltetrazolium bromide [MTT] assay). Cells were plated in 
96 well plates at 7 × 103 per 100 μL per well with density determined 
based on the growth characteristics of each cell line. After overnight 
incubation, triplicate wells were treated with varying concentrations 
of compounds ranging from 1 to 100 µm/mL and standard docetaxel 
incubated for 3 days. After 3 days, the medium was replaced with 
2 µL of MTT solution (5 mg/mL) and cells were incubated for 3 h. 
Formazan crystals were dissolved in DMSO. The relative percentage 
of metabolically active cells compared with untreated controls 
was then determined based on the mitochondrial conversion of 
MTT to formazan crystals, which were dissolved in DMSO and 
spectrophotometric absorbance of the sample was determined by a 
microplate reader (BIORAD) at 570/630 nm.

CONCLUSION

Increasing bacterial resistance against antibiotics and life-threatening 
side effects of the anticancer drug has posed great challenges to the 
human race. There is an emergent need to identify new leads and 
subsequent development to drug molecules to obtain safer and 
effective treatments to reduce the burden of cancer and bacterias. 
In an attempt to identify new leads, we designed and synthesized 
naphthalene-based pyrimidines and evaluated their antibacterial and 
cytotoxic potential. Compound 5b was identified as the most potent 
antibacterial compound, was found to possess higher cytotoxicity. 
The other compounds were active against bacteria and displayed 
satisfactory results against tested cell lines.
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