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ABSTRACT

Neurological disorders

Stress is a common disorder affecting the normal functioning of the brain and behavior majorly in the
prefrontal cortex and hippocampus region of the brain. Any long-term intrinsic and extrinsic stimulus
evokes chronic stress-like conditions. Chronic stress reported enhancing the formation of reactive oxygen
species, leading to mitochondrial cell death through the activation of the hypothalamic-pituitary axis which
releases cortisol, excessive secretion of cortisol is responsible for alteration in glucose metabolism, and
other neurological disorders such as anxiety, depression, multiple sclerosis, Alzheimer, and Parkinson’s
disease. The purpose of this review is to provide an insight into the various pathophysiological aspects along
with neurotransmitters involved in chronic stress and its association with various neurological disorders.
Along with this, we also provided a background on the various experimental models of chronic stress.
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INTRODUCTION

Stress is characterized by altered physical, mental (with
impaired learning, decision making, and anxiety), and
emotional behavior, leading to altered brain function and
physiological changes of the body.!'! As per the literature,
stress is divided into acute, chronic eustress, and distress.!
In acute stress, the body will prepare itself to defend from
unusual stress. Chronic stress occurs when the person is
exposed to a longer duration of stress which, further,
leads to various neurological disorders such as anxiety,
depression, and disruption in memory also reported to
affect the immune system.[! Another stress that is good
with positive feelings is “eustress” which means beneficial
stress.[>1% Last but not least is distress, in which the person
has negative feelings or thoughts that can harm the body
(including problems associated with work and financial
difficulties).l"
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As per the National Mental Health Survey of India 2015—
2016, the neurotic and stress-related disorders in the female
are 5.7% and in the male are 4.8%.'% According to the
2019 CIGNA 360 wellbeing survey results, 82% of India’s
population are suffering from the high levels of stress.
Moreover, chronic stress has been reported to have a very
broad effect on behavioral and immunological responses.

A NEUROPATHOLOGICAL CASCADE OF
CHRONIC STRESS

The brain, the central organ of our body, is the major
site that perceives and determines the behavioral and
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physiological responses to the different stress conditions.
The pathophysiological aspects behind chronic stress
involve alterations of the hypothalamus-pituitary-axis
(HPA), neuroinflammation or alteration of immune system
pathways, and neurotransmitters alterations which are
explained as follows —

HPA pathway

Amygdala is a region in the brain that interprets the
message. When the amygdala recognizes the danger, it
directly drives a distress signal to the hypothalamus.!'
Hypothalamus is the command center in the brain. It also
liaises with other parts of the body through the autonomic
nervous system (ANS) and HPA. The HPA regulates the
stress signal and in normal conditions, the HPA receives a
signal which activates the paraventricular nucleus of the
hypothalamus containing neurons. These neurons secrete
corticotropin-releasing factor (CRF).l'" It is a peptide
hormone which is also known as the corticotropin-
releasing hormone (CRH), responsible for the stimulation
of the pituitary gland containing proopiomelanocortin.
This leads to the production of adrenocorticotropic
hormone (ACTH) and activation of the adrenal gland
which secretes cortisol. Cortisol contributes a negative
feedback mechanism to the hypothalamus to control
the release of hormones. It is also responsible for the
metabolism of glucose, immune function, and behavioral
responses when it binds with glucocorticoid receptors
[Figure 1].05-17

In chronic stressed conditions, there is excessive secretion
of cortisol which impairs the binding of cortisol to
glucocorticoid receptor and disrupts the negative feedback
mechanism.!'™> In normal conditions, cortisol inhibits the
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Figure 1: The normal physiology of stress — activation of
HPA axis which activates PVN of hypothalamus. These
neurons secrete corticotropin releasing factor which leads to
production of adrenocorticotropic hormone and activation of
adrenal gland which produces and secrete cortisol. Cortisol
gives a negative feedback mechanism to hypothalamus
to control the release of the hormones and thus maintains
homeostasis.

constant secretion of CRH through a negative feedback
mechanism when it is sufficient. CRH is responsible for
the inflammatory responses from mast cells, also trigger
by the nor-epinephrine release, upregulation of receptor-
like glutamate, and N-methyl-D-aspartate receptors
(NMDA).I'8 Chronic stress can prolong and increase
cortisol secretion, downregulates the glucocorticoid
receptor, blocks the binding of cortisol, and develops
insulin-resistant diabetes.!"”’

Immune system alterations
Cytokines

In acute stressed conditions after the release of cortisol,
cortisol binds with the glucocorticoid receptor. Then,
it binds with the specific sequence of DNA to regulate
gene transcription. It also interferes with the signaling of
transcription factors such as NF-kf3 and AP-1 and suppresses
the inflammatory cytokines which are responsible for
the inflammation, whereas, in chronic stress conditions,
the release of inflammatory markers is increased which
include interleukin (IL)-1f and tumor necrosis factor-o
(TNF-ou).20-2

Microglial activation

Chronic stress plays an important role in the activation
of microglia.”® Microglia are the macrophages that are
present in central nervous system (CNS) and sensitive to
brain injury and disease.*! Any infection, ischemia, trauma,
and neurodegenerative diseases or alteration in neuronal
activity leading to any disturbance or loss of homeostasis
in the brain that indicates a potential danger in CNS can
bring changes in the shape of the microglial cell.®> The
stress may increase the level of cortisol or cytokines from
the periphery leading to the activation of microglia. This
will increase the pro-inflammatory markers in the CNS
such as IL-1P and TNF-c. Further, these proceedings may
cause atrophy of astrocytes and raise the level of IL-1p.
The glucocorticoid receptor is downregulated, whereas
the level of glutamate increases in the synaptic cleft by
NMDA receptors. The calcium rises in neurons which are
responsible for the degradation of the cytoskeleton of cells
and increase the production of reactive oxygen species
(ROS) and neuronal cell death. It is also responsible for
neurodegenerative diseases and impairment of learning and
memory. 62

Neurotransmitter alterations

Neurotransmitters play an important role in the
pathophysiology of stress or chronic stress. These are the
chemicals that are involved in the transmission of signals
from one neuron to others in the body. The neurotransmitters
which are altered in stressed conditions are dopamine,
serotonin, glutamate, gamma-aminobutyric acid (GABA),
adrenaline, and nor-adrenaline [Figure 2].
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NMDA

In chronic stress conditions, there is an increase in glutamate
release which increases the intracellular calcium through
activation of enzymes such as endonucleases, proteases, and
oxidases. These enzymes degrade the cytoskeletal structure
of the cell. The increase in intracellular calcium causes
free radical generation which increases oxidative stress.
An increase in oxidative stress damage the mitochondria
and further can cause cell death.l'®"”! Some studies may
also reveal that chronic stress over activates GIuN2B (an
NMDA receptor subtype) which contains NMDA receptors
in the prefrontal cortex (PFC). Chronic stress accumulates
glutamate or blocks the uptake of glutamate developing
depressive behaviors. The glutamatergic transmission
through synaptic NMDA receptors (GluN1-/GIuN2B)
assists neuroprotection through extrasynaptic NMDA
receptors that cause excitotoxicity [Figure 3].03%

Dopamine

DA is an important neurotransmitter that is responsible for
various behavioral and biological functions in the CNS.
It regulates the locomotor activity and neuroendocrine
secretion.®!! There are many neurodegenerative disorders
associated with dopamine neurotransmission. Many studies
suggested that dopamine level is altered throughout chronic
stressful events.’>35 In chronic stress, the dopamine levels
were remarkably reduced in the brain, hippocampus, and
striatum. However, there is no significant difference in
DA level in the amygdala. Decreased level of DA in the
hippocampus in stressed conditions is due to reduced activity
of enzyme cholinesterase and rise in the concentration
of acetylcholine which increases impermanent (lasting
for a short time) memory.?%3"! Dopamine generates ROS
by the metabolism of mono amine oxidase (MAO) and
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Figure 2:Figuredepictsalterationindifferentneurotransmitters
release due to stress response which is dopamine, serotonin,
glutamate, GABA, adrenaline and nor-adrenaline. The level of
neurotransmitters which are increased during stress condition
are — glutamate, adrenaline, nor-adrenaline and decreased are
— GABA, serotonin, and dopamine.

auto-oxidation. The molecular oxygen reacts with dopamine
and thus forms semiquinones and quinones which later can
cause depletion of GSH with continuous ROS generation.
Further, dopamine turnover and metabolism rise which
may produce hydrogen peroxide (H,0,) through MAO
activity which can be responsible for lipid peroxidation in
the neuronal membrane.*®

Serotonin

In the hypothalamus, serotonin is an important
neurotransmitter for the regulation of stress. Receptors
that are involved in stress are 5-HTIA and 5-HT2A
receptors. These receptors are situated on neurons present
in the paraventricular nucleus of the medial hypothalamus.
It has been also found to arbitrate the release of stress
hormones.?># In chronic stress conditions, the level of
serotonin decreases in the frontal cortex, striatum, and
hippocampus. The reduced serotonin levels lead to the
alteration in brain responses to chronic stress. The alteration
in 5-HT transmission may also increase oxidative stress
during CUS.B®

Glutamate

Glutamate is an excitatory neurotransmitter, which plays
an important role in the body. In chronic stressed condition,
the glutamate release is elevated.l*!**! Chronic stress also
increases plasmalemmal glial-glutamate transporter 2 and
vesicular glutamate transporter-1 (VGLUT-1), but the
mechanism is unknown. VGLUT-1 plays an essential role
in the regulation of the amount of glutamate in synaptic
vesicles. The increase in glutamate concentration leads to
excitotoxicity and further damage to cells.[*]

GABA

GABAergic neurons directly inhibit the paraventricular
nucleus, also lowers the ACTH secretion in the
hypothalamus, and further CRH release.*”) The GABAergic
markers are altered due to chronic unpredictable stress.
The glutamic acid decarboxylase expressions are reduced
in both the PFC and hippocampus.*) During stressed
conditions, the GABAergic neurons are unable to control
the secretions of ACTH and CRH.*) Whereas the
mechanisms behind the reduction of GABA content are not
fully described.[*

Adrenaline

Adrenaline or epinephrine is also called as flight and
fight hormone.""! It is secreted by adrenal glands after a
stressful event. It gives immediate action when we feel
stressed.*™ During the stressed condition, it is secreted
with noradrenaline. In acute stress conditions, both
adrenaline and noradrenaline help to maintain homeostasis.
The prolonged release of these catecholamines affects the
psychological and physical outcomes of the body. It may
also contribute to abnormal cardiac functions."*>%
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Figure 3: Depicts activity of NMDA receptor in stress condition. The NMDA receptor is hyperactivated in stress condition which
upregulates release of glutamate which causes extracellular accumulation of glutamate in CNS, further, it increases calcium influx
in the cell. This is responsible for the generation of free radical cell and increase oxidative stress.

Noradrenaline

The norepinephrine or noradrenaline level was increased
in chronic stressed conditions.®Y) The primary role of
noradrenaline is to make people more aware, focused during
the stressed condition. Like adrenaline, it is also secreted from
the adrenal gland. In stress conditions, the expression of the
o-adrenergic receptor is increased which results in decreased
vascular tone. The impaired secretion of noradrenaline during
stressed conditions also relays the nociceptive effect toward
the spinal dorsal horn.®*3* The altered norepinephrine level
also causes sleeplessness, which slows healing of injury,
anxiety, and gastrointestinal problems.>

Neuromodulator alterations
Adenosine

Adenosine is a neuromodulator present in the brain and its
level has been reported to be increased in stress conditions.
The action of cytosolic adenosine deaminase (ADA) was
remarkably decreased in stressed conditions.’) ADA is an
enzyme that regulates the level of adenosine.’”’ Animal
studies suggest that acute restraint stress leads to alteration
in the level of adenosine in the brain. Thus, the cytosolic
ADA activity is decreased that leads to an increase in
extracellular adenosine levels through bidirectional
transport of nucleoside. Adenosine is a nucleoside that acts
through the purinergic P1 receptor and controls the neuronal
activity in the brain. The purinergic signaling may act as
a compensatory mechanism and maintain homeostasis.

Thus, the normal mechanism is that adenosine has
anxiolytic effects and during stress plays an important role
in counteracting stress.’**¥ The adenosine extracellular
and nucleotides act on two types of purinoceptors, that
is, P1 and P2. They are, further, subdivided into P1 -Al,
A2A, A2B, A3, and P2 P2X, P2Y receptors. Extracellular
nucleotide and nucleoside levels are controlled by a
cascade of enzymes located on the cell surface called
ectonucleotidases. The availability of ligands (ATP, AMP,
ADP, and Adenosine) for purine receptors was controlled
by ectonucleotidase cascade. Diphosphonucleosides and
triphosphonucleosides hydrolyzed through the enzyme
nucleoside triphosphate phosphohydrolase (NTPDases).
The enzyme ecto-5'-nucleotidase hydrolyzes nucleoside
monophosphates and produces adenosine.®® Shreds of
evidence have demonstrated that receptors of adenosine
might be altered during chronic stress conditions. The
extracellular ATP concentration and adenosine are also
observed after the application of stressors in rodents.”!

The interaction between antagonistic A2ZAR-D2R results in
the formation of heterodimers, which regulate excitation of
neurons and neurotransmitter release. A2AR trigger with
stimulation of adenylyl-cyclase. Stimulation of adenylyl
cyclase interferes with the signaling of the cAMP pathway
through phosphorylation of PKA substrates such as CREB,
DARPP-32, and also consequently increase the expression
of various genes. The D2R activation impedes the effects of
A2A receptor stimulation by inhibiting adenylyl cyclase.5
The factors such as CRF, phospho cyclic AMP response
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element-binding protein (CREB), and calcineurin are altered
in chronic stressed conditions. The mRNA expression is
increased for CRF and calcineurin and decreases pCREB
in stressed conditions as compared to non-stressed. Most
of the protein which gets downregulated in the brain are
ALDOAA, PHB2, PGAMIB, SNCB, SLC25AS5, CKM,
ALDOCB, PVALBS5, NME2B, and CKB as compared to
normal conditions.*”

BDNF

BDNF is akey component for the development, perpetuation,
plasticity, and survival of CNS neurons.’!) The BDNF is
synthesized in the hippocampus and is regulated by different
and hormone neurotransmitters. In a stressed condition,
the BDNF mRNA expression is reduced.’) Chronic
stress increases the glucocorticoids and downregulates
the glucocorticoid receptor and raises the level of stress
hormones, causing a reduction in BDNF level. However,
when the origin of the stress is stripped away, the
hippocampus shows improvement in cognitive and synaptic
deficits. Further, studies also demonstrated that decreased
expression of BDNF increases the glutamate release,
excitotoxicity of neurons, and also weakens the activation of
phospholipase-C y.16>

ASSOCIATION OF CHRONIC STRESS WITH
DIFFERENT NEUROLOGICAL CONDITIONS

Chronic stress may lead to various neurological disease
conditions such as anxiety and depression.[* In various
studies, spine retraction and dendritic atrophy were
followed by chronic restraint stress. The monoaminergic
neurotransmission, specifically NE acting at a1-adrenergic
receptors and serotonin acting at 5-HT2A receptors,
causes excitotoxicity through facilitating glutamatergic
transmission from thalamocortical afferents in pyramidal
cells.®] Chronic stress interferes with monoaminergic
neurotransmission, excitotoxic damage, and results in
cognitive deficit.’! Serotonin also facilitates glutamate
transmission at pyramidal cell dendrites in the PFC.["
Depletion of the cortical serotonergic system or wrecking
of serotonin causes debts in reversal learning.[%
Exposure to chronic stress also produced a persistent rise in
anxiety-like behavior. Anxiety is a prominent component
of depression.”’! In anxiety, the level of GABA an
inhibitory neurotransmitter is decreased, whereas the
other neurotransmitters such as glutamate, serotonin, and
noradrenaline are increased [Figure 4].071

Anxiety

Studies suggest that in anxiety, the individual has fear-
like symptoms.[>”! Certain studies suggested a dual role
of serotonin when serotonin is released from the dorsal
raphe nucleus terminal decreases the learned anxiety
while increases innate fear.’¥ There is an increased level

of biogenic amines such as serotonin and dopamine in
anxiety.[™

Major depressive disorder

Clinical studies show that stressful events in life are
important factors that are responsible for the development
of depression."**! In depression, biogenic amines such
as serotonin, acetylcholine, noradrenaline, and dopamine
play an important role. When stress is not controllable, the
neurochemical utilization increases leading to the reduced
level of these amines. The deficiency of these amines led to
depression.””! Studies have revealed that in major depressive
disorder, the level of glutamate and GABA is altered, which
prompt glutamatergic hyperactivity. GABA is an important
inhibitory neurotransmitter which on activation fabricates
antidepressant-like effects. Different regions of the brain
involved in depression are the thalamus, hippocampus,
amygdala, prefrontal, cingulate cortex, and striatum. On
exposure to stress, the excitatory neurotransmitter glutamate
release from presynaptic neurons subsequently binds with
NMDA receptors, kainite receptors, o-amino-3-hydroxy5-
methyl-4-isoxazole-propionic acid, and metabotropic receptors
present at both pre- and postsynaptic cells, initiates pathways of
downstream signaling. These lead to increased accumulation of
calcium intracellularly and an increase in oxidative stress which
is responsible for mitochondrial dysfunction, excitotoxicity
of neurons, and neuronal death.®*" Various studies revealed
that there is a decreased amount of GABA in plasma and
CSF. The abnormalities in serotonin receptors are also seen
in clinical studies especially in 5-HT-2A. The metabolites of
dopamine are also decreased like homovanillic acid which is
also responsible for depression.[*641:821

Parkinson’s disease

Parkinson’s disease is a neurodegenerative disease
characterized by involuntary movements and decreased
muscle strength.®! Stress can affect the level of dopamine
and its control of motor movements, whereas the increased
production of glucocorticoids affects the compensatory
mechanism of the impaired motor system. Dopamine is a
principal neurotransmitter in the brain. DA is the precursor
for other catecholamines.® Stress and increased level of
cortisol or glucocorticoid cause the stimulation of pro-
inflammatory cytokines leading to CNS inflammation. >58¢
Till now, there is no direct relationship has been proved
between stress and PD.I"® However, studies suggest that
chronic stress aggravates functional deficiency and leading
to dopaminergic neuronal loss.*”! Psychological stress and
raised levels of corticosterone lead to neuronal loss in the
substantia nigra to an increased extent.[%¢

Epilepsy

Epilepsy is characterized by repeated seizures. As the
discharge of corticosteroid increases, the convulsion
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Figure 4: Depicting various neurological disorders which are associated with chronic stress. These include anxiety, major
depressive disorder, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and epilepsy.

susceptibility and seizure rate also increase.®! The
preclinical studies showed that early life stress provokes
seizures and further lead to epilepsy. It is caused due to
hyperactivation of the HPA during stress conditions.!®”’
The stress leads to an impaired release of glutamate
which contributes to the atypical firing of neurons in
the brain. The evidence suggests that cortisol plays
an important role in controlling seizures.”**? In
epilepsy, there is inhibition of GABA levels causing
hyperexcitable neurotransmission and an increase in
CRH, leading to changes in neuronal structure and also
inflammation.*%3

Multiple sclerosis

Multiple sclerosis is an immune arbitrate inflammatory
disease. It is indicated by the activation of microglia and
cytotoxic mediator causing nervous tissue damage.”®
It is also characterized by neural and axonal loss.”” In
stressed conditions, there is a release of pro-inflammatory
cytokines which increase oxidative stress. The increase
in oxidative stress causes neurodegeneration.’® Due to
chronic stress, depletion of ATP takes place which leads
to dysfunction of astrocyte and elevated level of glutamate
causing neuronal death. The elevated level of glutamate
leading to dysfunction of ion channels which further
increases the calcium level- Change this as Glutamate
excitotoxcity leads to dysfunctioning of Ion channels that
further leads to increase in calcium ion. Further, these
changes in conditions lead to mutation in mitochondrial
DNA, making of proteolytic enzyme and activate apoptotic
pathway.t”!

Alzheimer’s disease

Alzheimer’s disease is a capacitating neurodegenerative
disorder that leads to dementia. The previous studies revealed
that in Alzheimer’s the higher cortisol level increases the
progression of the disease.'"!%?l An increased Amyloid 3
(AP) accumulation increases the burden in the brain.!'®! An
increase in the accumulation of AP causes the formation of
plaques within the brain and also produces neurofibrillary
tangles, neuronal loss. The normal function of Af is it acts
as anti-oxidative, which regulates cholesterol.'%-1%] The
behavioral and psychological conditions change in AD due to
disruption in neuronal circuits which arbitrate stress.'°! Af is
produced from amyloid precursor protein by the proteolysis of
[-secretase and by a y-secretase enzyme.!'”” The intracellular
AP activates caspases through the process of mitochondrial
stress. The activation of caspase cleaves tau, which causes
conformational changes leading to paired helical filaments.
Progressive aggregation of tau causes the disruption of the
cytoskeleton and subsequently neuronal loss. The deposition
of extracellular amyloid triggers reactive changes in glial
cells and neuroinflammation that may also lead to neuronal
loss by the creation of ROS, nitrous oxide, and other pro-
inflammatory cytokines. Further, the increase in oxidative
stress and inflammatory cytokines causes cognitive
dysfunction and progression of Alzheimer’s disease.%%11

EXPERIMENTAL MODELS OF STRESS
CONDITIONS

The experimental models are more commonly used to
mimic the human disease conditions so as investigate the
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therapeutic drug targets against the disease. The various
experimental models have been used to mimic the stressful
conditions to study the underlying mechanisms and it
includes both rodent and non-rodent models.

Rodent models

This model comprises vertebrates and mammals. The
different models of stress include deprivation paradigm
such as food, water deprivation, restraint; exposure to
adverse environmental stimuli which includes hot and
cold; pain paradigm — it is pain based paradigm including
electric foot shock, tail pinch; pharmacologically-induced
hyperalgesia (formalin, carrageenan); and fear and
anxiety based paradigms which includes predator stress,
models of social conflict, and disruption including social
isolation.['112]

Food and water deprivation

The animals are underprivileged by both food and water.
The deprivation of food produces humoral and behavioral
alterations in response to stress.!!!! Starvation induces
changes in CRF by activating the HPA axis.'"¥ Food
and water deprivation increases the level of basal plasma
corticosterone level and decreases the levels of CRH
mRNA in the paraventricular nucleus."'¥ The animals were
deprived for 12, 48 h once a week in water deprivation,
whereas food deprivation is for 24 or 48 h earlier to their
food and water intake.!'!*]

Restraint stress

Chronic restraint stress act as psychological stressors,
in which an animal is placed in a small area. It produces
cognitive deficits in the hippocampus and also changes its
structure.l''"! Tt activates the HPA axis and increases the
corticosterone levels in serum. Furthermore, it increases
anxiety levels and showed depressive behaviors in animal
models. It also affects the hypothalamic gene expression,
body weight, and food intake. It also showed an increase in
plasma fatty acid, cholesterol level, and glycerol whereas
reduction in plasma triglyceride.''7!!8! The rats were
restrained for 6 h regularly for 21 days.!!!*120]

Cold exposure

Cold exposure activates certain systems such as the
sympathoadrenal (SA) system and HPA or hypothalamo-
pituitary-thyroid (HPT) system. The SA system activation
alterstherelease of catecholamines; HPA enhances therelease
of cortisol, whereas HPT increases the release of thyroid
hormones (T3 and T4). The T3 levels are elevated after
chronic exposure to stress and act as a potent thermogenic
substance, which maintains the body temperature during
severe cold. Furthermore, prolonged stress decreased TRH
mRNA, plasma TSH, and T4, T3 level. The exposure of
cold temperature is at 4°C for 3 h.['2!-123]

Social isolation

Socialisolationaltersthe functionaland structural development
of the brain. It also alters the behavior of rodent animals and
enhances locomotor activity, anxiety-like, and aggressive
behavior. It impairs memory and spatial learning.['"** It causes
alterations in dopamine and serotonin systems in the nucleus
accumbens, hippocampus, and PFC.['"*! The animals were
socially isolated for 1 or 3 weeks.[26:127]

Electric foot shock

In this method, the animal is administered several
footshocks for some time (1-6 s). The range of shock lies
between 0.1 and 0.25 mA.['2%130 Electric foot shock stress
increases plasma ACTH and corticosterone levels. In the
amygdala, CRF mRNA expression has been reported to be
increased. It also increases the IL-6 in serum.!'3!:13%

Tail pinch

Tail pinch induces licking, gnawing, and eating behavior
in rats.l'* In this method, the tail of a rat is pinched with
a clamp. This method immediately produces stressful
events.[3* It is widely used for the testing of analgesics.!'*

Post-traumatic stress disorder

PTSD is a complex disorder, in which emotional learning
and memory process dysfunctions that trigger fear responses
in the absence of traumatic situations.[** Different rodent
models are used to mimic the effect of PTSD-induced trauma.
These include single prolonged stress such as restraint
stress!37138] predator scent stress (the animal was placed
on soiled cat litter for 10 min in a locked environment),!'*!
housing instability (animals are exposed to a predator),!!*
and early life stress (induced through maternal isolation).['*!

Non-rodent models

Non-rodent models are those which are other than vertebrates
and mammals. Several non-rodent animals are used in
research such as dogs, pigs, rabbits, and zebrafish. Among
which, the zebrafish model is beneficial for the study of
stress condition, as its neural systems are similar to humans.

Zebrafish

The zebrafish (Danio rerio) is widely used as an
experimental model. It is an emerging model for the study
of brain disorders such as anxiety,'*? depression, autism,
psychosis, cognitive impairment.'¥! The physiological
system, structure, and function of the brain’s neural system
are similar to vertebrates. It is homologous to rodents and
humans.["*1431 Zebrafish responds to a variety of different
stressors like mammals. The different stressors include
temperature changes such as cold and hot; exposure to
predators, restraint, chasing, tank change, crowding, and
increases the level of cortisol in the body which is an
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important steroid (corticosteroid/stress hormone) in humans
and animals.["*¢*1 This model is also used for the study of
acid water,!"*® organic pollutants,'*! and heavy metals.['%1511

FUTURE ASPECTS

Stress is the leading cause of many other conditions such
as anxiety, depression, and dementia. Till now, there
is no specific medication for the treatment of stress,
but the conditions can be overcome by exploring the
pathophysiological events associated with chronic stress.
For the development of newer molecules that are effective
in these conditions with lesser side effects, these rodent and
non-rodent models are considered and more commonly used.
Various pathophysiological pathways have been explored
in chronic stress which includes HPA axis activation, SA
medullary axis, NMDA receptor, an imbalance between
neurotransmitters, and alterations in immune systems. But
still, the exact underlying mechanism is unknown.
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