

REVIEW ARTICLE

Synthetic strategy of 2-thioxo-4-thiazolidinone with core chemistry and biological importance

Abhishek Chaurasiya, Pooja A. Chawla

Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India

ABSTRACT

Due to the vast range of biological actions that rhodanine and its derivatives exhibit, they are recognized as privileged structures in pharmacological research. However, the rhodanine skeleton synthesis process has certain limitations. However, the rhodanine ring's reactivity enabled the creation of various arylidenes at position 5 and carboxylic acids at position 3, respectively. The principal pathways of heterocycle alteration are determined by the most reactive sites in 4-thiazolidinone, which are 3 and 5. In a review paper, the chemistry of 4-thiazolidinones was discussed, in particular the rhodanine ring and several methods for its reactions, including ring modification. The study deals with thioureas and thioglycolic acid react in a single step, catalyzed by protic acid, resulting in the direct preparation of N-aryl rhodanines as well as the rhodanine skeleton, offering a novel method for the synthesis of rhodanine and its derivatives. The presented approach is simple, effective, atom-efficient, and practical in high yields.

KEY WORDS: 4-Thiazolidinones, Heterocycle, Methylene carbon, Rhodanine, SN2 type, Synthesis, Thiazolidone, Thioglycolic acid, Thiourea

INTRODUCTION

The potential of 4-thiazolidinones as medications has been taken into consideration by pharmaceutical experts since the turn of the 20th century.^[1] As a result, rhodanines, thiazolidine-2,4-diones, and thiazol-4(5H)-ones, which include sulfur and nitrogen, became intriguing target structures for therapeutic development and discovery.^[2] The N-3 and C-5 positions of the nucleus can be substituted in a variety of ways by the rhodanine core. Researchers from all over the world have worked tirelessly to show that the presence of arylidene substituents at the C-5 position and carboxyalkyl (acetic, propionic, butyric, and pentanoic) acid fragments at the N-3 position demonstrated higher biological activity.^[3] The antidiabetic,^[4] anti-HIV,^[5,6] anti-infective,^[7] anti-Alzheimer,^[8] anticancer,^[9-12] antibacterial,^[13] anti-tubercular,^[14] antifungal,^[15] anti-anxiety,^[16] anti-inflammatory,^[17] anti-depressant,^[18] and anti-HSV microbicides^[19] actions of the synthesised compounds have been investigated. In addition, the mechanistic analysis

has shown that rhodanine-based ligands may interact with a range of pharmacological targets. The medicine epalrestat, which is intended to halt the progression of diabetic neuropathy, is a notable example of a well-advertised medication.^[20] Rhodanine structural scaffolds have also reportedly been used in the production of certain highly effective solar material polymers. They may also be employed as a reagent for the detection of metal ions and have coordination abilities. Rhodanine and its derivatives hence have a wide range of uses in analytical, photo, and coordination chemistry in addition to playing a significant part in pharmaceutical and biochemistry chemistry.^[21-23] The excellent biological activities that rhodanine analogues have demonstrated in the life sciences and pharmaceuticals have made them the primary structural component of novel medications and desirable synthetic targets.

Access this article online

Website:
<http://isfcppharmaspire.com>

DOI:
10.56933/Pharmaspire.2022.14212

Date of Submission: 13 July 2022
Date of Revision: 16 July 2022
Date of Acceptance: 19 July 2022

Address for Correspondence:
Dr. Pooja A. Chawla,
E-mail: pvchawla@gmail.com

CHEMISTRY OF RHODANINE

The ability of rhodanine to control and change electrochemical and spectral properties is an intriguing argument for why it is utilized in solar cells and colors.^[24] Rhodanine is a five-membered heterocycle with amino and thioether groups at positions 1 and 3, respectively. It shares structural similarities with the compounds thiazolidine-2,4-dione and 2-iminothiazolidine-4-one, which have an oxo or imino group at position 2 instead of a thioxo group. In addition, it has a connection to 4-thioxothiazolidin-2-one, which has oxo and thioxo groups in positions opposite to those in rhodanine.^[25] Rhodanine modification is the next step in the synthesis of rhodanine derivatives. There are several MCRs in this set of transformations as well as straightforward reactions. The synthesis of several thiazolidinone-based chemicals uses rhodanine and its derivatives as efficient building blocks. The Knoevenagel reaction, which involves condensing rhodanine and an oxo compound, is one of the most used methods for fundamental core alteration.^[26] The target compounds can be produced by attacking an electrophilic center because to the

nucleophilic activity of the carbon atom of methylene at the C5 position. For various 5-ene-rhodanines synthesis (5-aryl (alkyl) idene-, 5-hetarylidene-, and 5-enamine-addition to the synthesis of 5-ene-rhodanines), the Knoevenagel condensation and related methods are straightforward and effective instruments. It is important to pay attention to the structural variations between 5-substituted derivatives with single and double bonds. Planar conjugated systems are created via the C5 exocyclic double bond of 5-ene-4-thiazolidinones. This double bond may be easily reduced to create corresponding unconjugated structures. Due to the greater ease of enolization at the 5-position under physiological circumstances, it is challenging to retain stereochemistry at this location in these types of non-conjugated complexes. Marketed drug and basic SAR study is incorporated on it^[1] [Figure 1].

METHODS FOR THE SYNTHESIS OF RHODANINE CORE

Various methods are available in the literature describing the synthesis of rhodanine skeletal from different starting

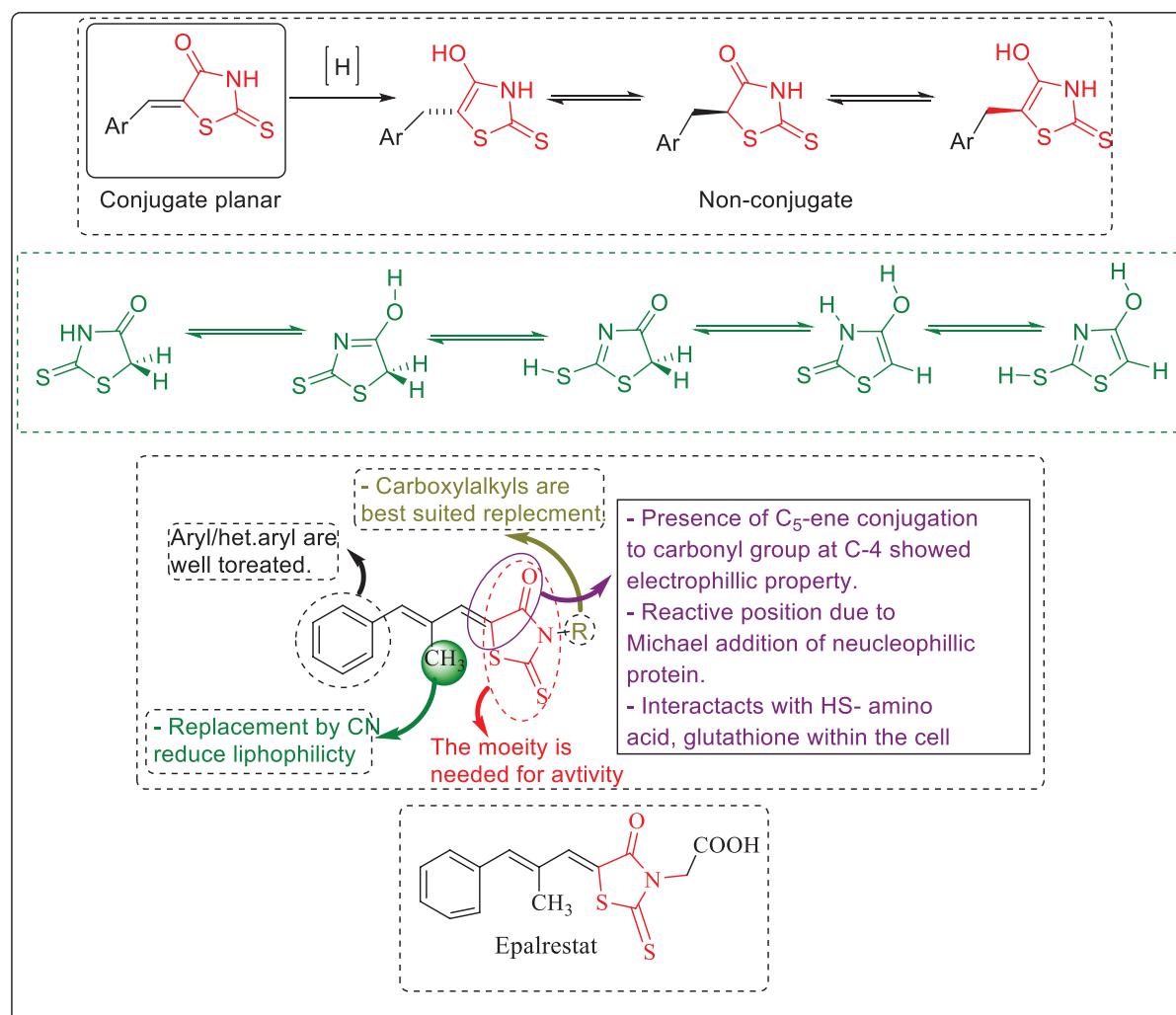
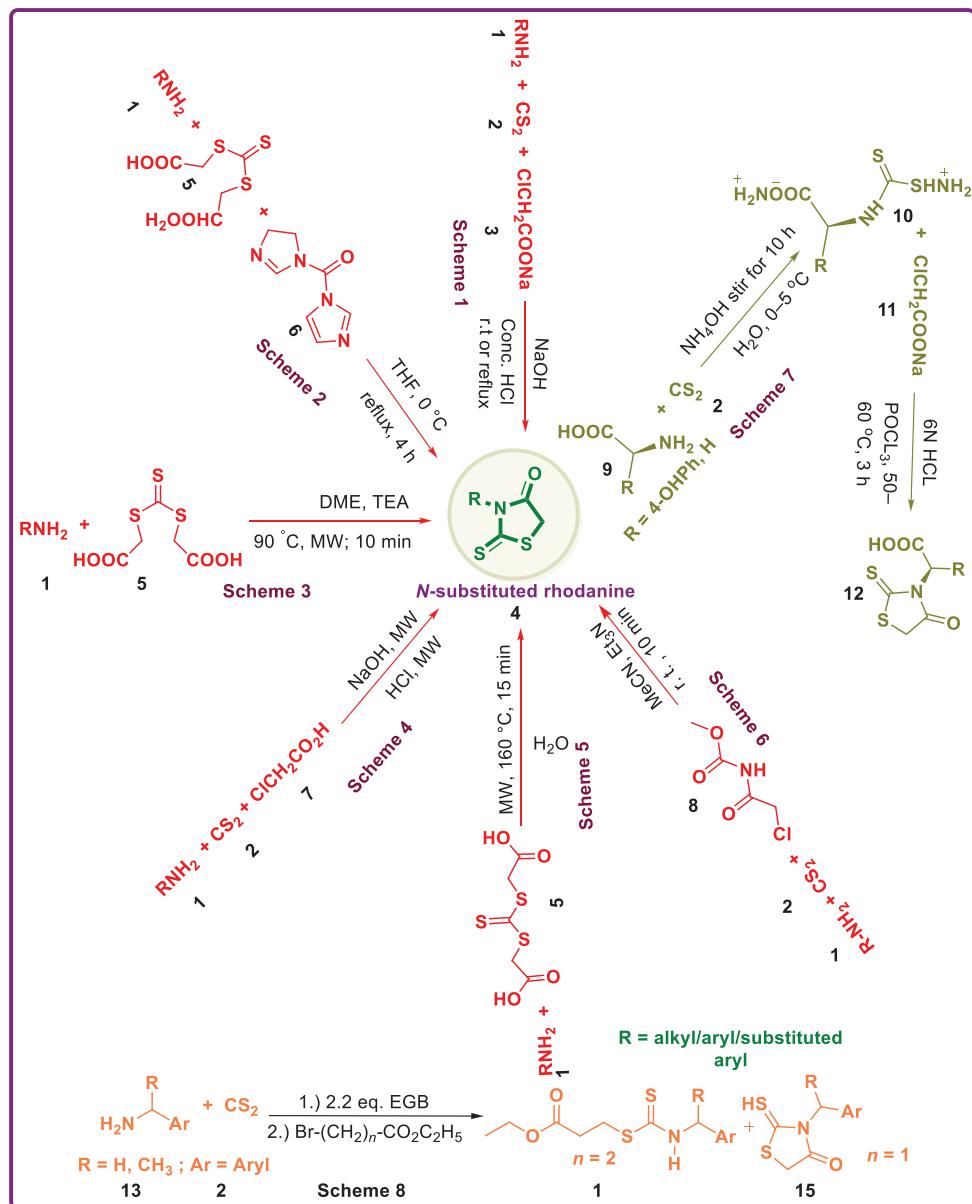
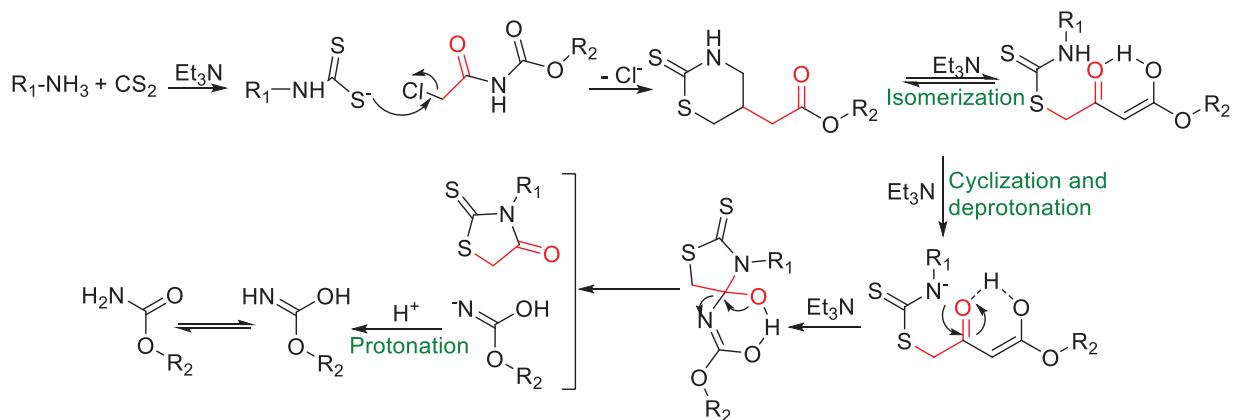
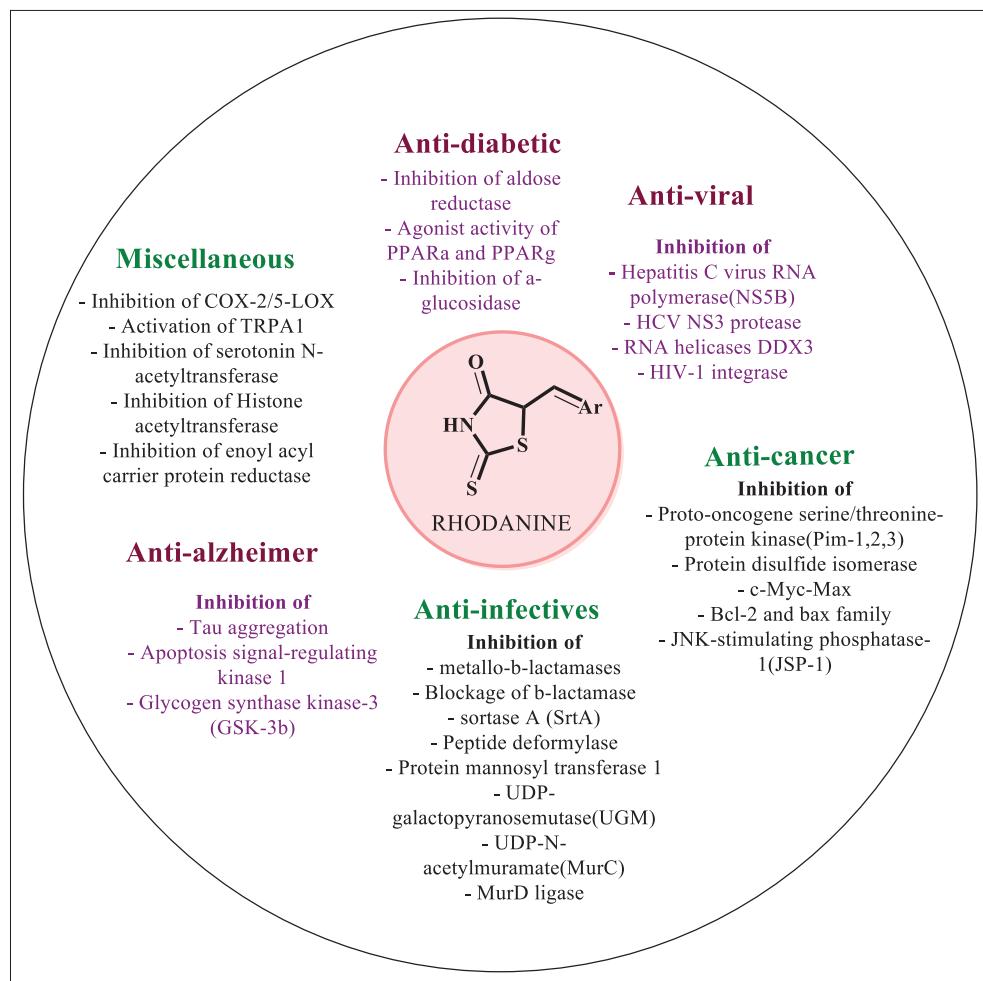



Figure 1: Conjugation and stereochemistry of rhodanine core with basic SAR study and marketed drug Epalrestat.

materials utilizing different reaction conditions. We have concise some of the schemes 1–8 in [Figure 2]. In synthetic scheme 1, alkaline solution of appropriate amine (**1**) was reacted with carbon disulphide (**2**) then treated with an aqueous solution of sodium chloroacetate (**3**) followed by the acidification and refluxed to afford the desired product (**4**).^[27] Scheme 2 reports the preparation of *N*-substituted rhodanine (**4**) by reacting amines (**1**) with trithiocarbonyl diglycolic acid (**5**) in the company of 1,1'-carbonyldiimidazole in THF at 0°C (**6**).^[28] Scheme 3 reports a rapid and convenient method for producing substituted rhodanines (**4**) using the “Holmberg method” under microwave-assisted conditions. The process parameters were tweaked to perfection and best results for the preparation were formed by utilizing dimethoxyethane (DME) as a solvent and adding 1 equivalent of trimethylamine (**1**). Using the optimized protocol, reaction


of bis (carboxymethyl)-trithiocarbonate (**5**) with diverse amines in DME under microwave irradiation at 90°C for 10 min in the presence of trimethylamine as a base afforded corresponding *N*-functionalized rhodanines in moderate to excellent yield.^[29] In scheme 4 and 5, Nitsche and Klein reported the microwave-assisted, one-pot, three-step methodology for the synthesis of *N*-substituted rhodanines quickly and efficiently (**4**). The protocol involves the reaction of amines (**1**) majorly alkyl- and benzylamines with carbon disulfide (**2**) in ethanol under basic environment in a microwave reactor meant for 5 min by 100°C. Then after, chloroacetic acid is added. (**7**) and a second reaction for 5 min at 100°C. The reaction mixture was acidified using excess of aqueous hydrochloric acid and heated at 120°C meant for 30 min to afford the product. Ethanol found to be more appropriate solvent than water in case of benzylamines and long reaction period in the third


Figure 2: Various synthetic routes for 2-Thioxo-4-thiazolidinone.

phase led to high products. The authors also demonstrated an alternative, microwave-assisted one-pot, and one-step protocol for the synthesis of *N*-arylrhodanines (**4**) using bis (carboxymethyl) trithiocarbonate (**5**) reagent in water for arylamine substrate (**1**). The developed protocol allows the preparations of a numerous *N*-substituted rhodanines (**4**).^[30] In scheme 6, Liang *et al.* constructed the multi-component reaction of primary amine (**1**), carbon disulphide (**2**) and 4-methoxyphenyl (2-chloroacetyl) carbamate (**8**) to gain

5-unsubstituted rhodanines (**4**). The proposed reaction mechanism for this process is depicted in [Figure 3].^[31] In scheme 7, Kumar *et al.* demonstrated an effective and stereospecific procedure for the conversion of free amino group (**9**) to the equivalent (\pm)-2-thioxo-thiazolidine-4-ones. The synthetic strategy involves the conversion of amino acid to ammonium salt which, in turn, reacts with carbon disulfide (**2**) to form dithiocarbamates (**10**). The intermediate dithiocarbamates on reaction with sodium

Figure 3: Mechanism for the synthesis of Rhodanine from carbamate.

Figure 4: Various biological importance of rhodanine.

chloroacetate (**11**) followed by cyclisation under acidic environment in the company of phosphorous oxychloride yielded 2-thioxo-thiazolidine-4-ones (**12**).^[4] Scheme 8 reports the electrogenerated base (EGB)-promoted preparation of *N*-benzylic 2-thioxo-thiazolidine-4-ones and carbamodithioate derivatives as of several benzylic amines (**13**), carbon disulfide and alkyl acid ester. The protocol involves the generation of required amount of base (cyanomethyl and aminocrotonitrile species) by electrolysis of dry acetonitrile under galvanostatic conditions at -20°C with magnesium as terminal anode electrode and stainless steel as cathode electrode under an inactive nitrogen atmosphere. Then, amine and carbon disulfide were added followed by the addition of bromoalkyl acid ester to afford benzylic carbamodithioates (**14**) along with ring closure benzylic rhodanine (**15**) product in good yields.^[32]

BIOLOGICAL IMPORTANCE

For more than 50 years, rhodanines have been the subject of extensive research, and they have been shown to be hits and lead against a broad variety of drug development targets in many therapeutic domains, as well as being useful as beginning points for medicinal chemistry.^[33] Rhodanine basically inhibits various cancer targets such as, Proto-oncogene serine/threonine-protein kinase (Pim-1,2,3),^[34] Protein disulfide isomerase, c-Myc-Max, Bcl-2 and bax family, and JNK-stimulating phosphatase-1. Similarly, it inhibits viral targets such as Hepatitis C virus RNA polymerase (NS5B),^[35] HCV NS3 protease, and RNA helicases DDX3 HIV-1 integrase.^[36] Moreover, for antimicrobial, antidiabetic, antialzheimier targets such as inhibition of metallo-*b*-lactamases, Blockage of Beta-lactamase, sortase A (SrtA),^[37] Peptide deformylase, Protein mannose transferase 1,^[38] UDP-galactopyranosemutase (UGM), and UDP-N-acetylglucosamine (MurC) MurD ligase. Furthermore, inhibition of Tau aggregation, apoptosis signal-regulating kinase 1, glycogen synthase kinase-3b, inhibition of COX-2/5-LOX, activation of TRPA1 (1), inhibition of serotonin N-acetyltransferase,^[39] inhibition of histone acetyltransferase, and inhibition of enoyl acyl carrier protein reductase^[40] [Figure 4].

CONCLUSION

We offered a novel approach to the synthesis of rhodanine and its derivatives. The synthesis process is simple, effective, atom-efficient, and practical in appropriate to excellent yields. An adaptable nucleus, thiazolidine, and its derivatives are particularly fascinating substances that have played a significant role in medicine and pharmacy. Ongoing study is being done on this subject wherein, the researchers' ability to create novel rhodanine derivatives with the necessary therapeutic efficacy for various disease management and eradication will be greatly aided by the

detailed biological activity used by the rhodanine motif and its chemistry discussed in this study.

ACKNOWLEDGMENTS

The authors are heartily thankful to the management of ISF College of Pharmacy for constant encouragement, support, and motivation.

REFERENCES

1. Kaminskyy D, Kryshchyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. *Expert Opin Drug Discov* 2017;12:1233-52.
2. Toumi A, Boudriga S, Hamden K, Sobeh M, Cheurfa M, Askri M, *et al.* Synthesis, antidiabetic activity and molecular docking study of rhodanine-substituted spirooxindole pyrrolidine derivatives as novel α -amylase inhibitors. *Bioorg Chem* 2021;106:104507.
3. Tejchman W, Korona-Głowniak I, Kwietniewski L, Żesławska E, Nitek W, Suder P, *et al.* Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Part II. *Saudi Pharm J* 2020;28:414-26.
4. Kumar BR, Basu P, Adhikary L, Nanjan MJ. Efficient conversion of N-terminal of L-tyrosine, DL-phenyl alanine, and glycine to substituted 2-thioxo-thiazolidine-4-ones: A stereospecific synthesis. *Synth Commun* 2012;42:3089-96.
5. Tintori C, Iovenitti G, Ceresola ER, Ferrarese R, Zamperini C, Brai A, *et al.* Rhodanine derivatives as potent anti-HIV and anti-HSV microbicides. *PloS One*. 2018;13:e0198478.
6. Rajamaki S, Innitzer A, Falciani C, Tintori C, Christ F, Witvrouw M, *et al.* Exploration of novel thiobarbituric acid-, rhodanine- and thiohydantoin-based HIV-1 integrase inhibitors. *Bioorg Med Chem Lett* 2009;19:3615-8.
7. Chauhan K, Sharma M, Saxena J, Singh SV, Trivedi P, Srivastava K, *et al.* Synthesis and biological evaluation of a new class of 4-aminoquinoline-rhodanine hybrid as potent anti-infective agents. *Eur J Med Chem* 2013;62:693-704.
8. Álvarez-Ginarte Y, Moreno-Castillo E, Montero-Cabrera LA, Bencomo-Martínez A, González-Alemán R, Leclerc F, editors. Integrative Model of Rhodanine Derivatives as Tau Aggregation Inhibitors in Alzheimer's disease. Bioinformatics2019 ix International Meeting on Bioinformatics and Omics; 2019.
9. Azizmohammadi M, Khoobi M, Ramazani A, Emami S, Zarrin A, Firuzi O, *et al.* 2H-chromene derivatives bearing thiazolidine-2, 4-dione, rhodanine or hydantoin moieties as potential anticancer agents. *Eur J Med Chem* 2013;59:15-22.
10. Khodair AI, Awad MK, Gesson JP, Elshaier YA. New N-ribosides and N-mannosides of rhodanine derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling studies. *Carbohydr Res* 2020;487:107894.

11. Ramesh V, Rao BA, Sharma P, Swarna B, Thummuri D, Srinivas K, *et al.* Synthesis and biological evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo [h] quinoline scaffolds as anticancer agents. *Eur J Med Chem* 2014;83:569-80.
12. Yin LJ, Ahmad Kamar AK, Fung GT, Liang CT, Avupati VR. Review of anticancer potentials and structure-activity relationships (SAR) of rhodanine derivatives. *Biomed Pharmacother* 2022;145:112406.
13. Gualtieri M, Bastide L, Villain-Guillot P, Michaux-Charachon S, Latouche J, Leonetti JP. *In vitro* activity of a new antibacterial rhodanine derivative against *Staphylococcus epidermidis* biofilms. *J Antimicrob Chemother* 2006;58:778-83.
14. Harathi N, Reddy SP, Sura M, Daddam JR. Structure prediction, molecular simulations of RmlD from *Mycobacterium tuberculosis*, and interaction studies of Rhodanine derivatives for anti-tuberculosis activity. *J Mol Model* 2021;27:75.
15. Insuasty B, Insuasty A, Tigreros A, Quiroga J, Abonia R, Nogueras M, *et al.* Synthesis and antifungal evaluation of novel dicyanoderivatives of rhodanine. *J Heterocycl Chem* 2011;48:347-50.
16. Bräse S. Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation. London, United Kingdom: Royal Society of Chemistry; 2015.
17. El-Miligy MM, Hazzaa AA, El-Messmary H, Nassra RA, El-Hawash SA. New hybrid molecules combining benzothiophene or benzofuran with rhodanine as dual COX-1/2 and 5-LOX inhibitors: Synthesis, biological evaluation and docking study. *Bioorg Chem* 2017;72:102-15.
18. Yang N, Ren Z, Zheng J, Feng L, Li D, Gao K, *et al.* 5-(4-hydroxy-3-dimethoxybenzylidene)-rhodanine (RD-1)-improved mitochondrial function prevents anxiety-and depressive-like states induced by chronic corticosterone injections in mice. *Neuropharmacology* 2016;105:587-93.
19. Tímea R. Influence of Chemical Compounds and Cell-autonomous Immunity on the Replication of Sexually Transmitted Pathogens; 2020.
20. Dewan M. A Review on Diabetic Neuropathy and Development of Sustained Release Tablet Containing 'Epalrestat'. Bangladesh: Brac University; 2018.
21. Privado M, Cuesta V, de la Cruz P, Keshtov ML, Singhal R, Sharmad GD, *et al.* Efficient polymer solar cells with high open-circuit voltage containing diketopyrrolopyrrole-based non-fullerene acceptor core end-capped with rhodanine units. *ACS Appl Mater Interfaces* 2017;9:11739-48.
22. Lee CH, Chiang CL, Liu SJ. Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions. *Sep Purif Technol* 2013;118:737-43.
23. Akram D, Elhaty IA, AlNeyadi SS. Synthesis and spectroscopic characterization of rhodanine azo dyes as selective chemosensors for detection of iron (III). *Chem Data Collect* 2020;28:100456.
24. Ooyama Y, Harima Y. Molecular designs and syntheses of organic dyes for dye-sensitized solar cells. *Eur J Org Chem* 2009;2009:2903-34.
25. Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. *Artif Cells Nanomed Biotechnol* 2019;47:1132-48.
26. Kaminsky D, Kryshchyn A, Lesyk R. 5-ene-4-thiazolidinones-an efficient tool in medicinal chemistry. *Eur J Med Chem* 2017;140:542-94.
27. Brown FC, Bradsher CK, Morgan EC, Tetenbaum M, Wilder P Jr. Some 3-substituted rhodanines. *J Am Chem Soc* 1956;78:384-8.
28. Yarovenko VN, Nikitina AS, Zavarzin IV, Krayushkin MM, Kovalenko LV. A convenient synthesis of N-substituted 2-thioxo-1, 3-thiazolidin-4-ones. *Synthesis* 2006;8:1246-8.
29. Radi M, Botta L, Casaluce G, Bernardini M, Botta M. Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives. *J Comb Chem* 2010;12:200-5.
30. Nitsche C, Klein CD. Aqueous microwave-assisted one-pot synthesis of N-substituted rhodanines. *Tetrahedron Lett* 2012;53:5197-201.
31. Liang Y, Tang ML, Huo Z, Zhang C, Sun X. A concise approach to N-substituted rhodanines through a base-assisted one-pot coupling and cyclization process. *Molecules* 2020;25:1138.
32. Tissaoui K, Raouafi N, Boujlel K. Electrogenerated base-promoted synthesis of N-benzylid rhodanine and carbamodithioate derivatives. *J Sulfur Chem* 2010;31:41-8.
33. Tomašić T, Mašić LP. Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation. *Expert Opin Drug Discov* 2012;7:549-60.
34. Cozza G, Pinna LA, Moro S. Protein kinase CK2 inhibitors: A patent review. *Expert Opin Ther Pat* 2012;22:1081-97.
35. Koch U, Narjes F. Recent progress in the development of inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. *Curr Top Med Chem* 2007;7:1302-29.
36. Patel AB, Kumari P. Recent advances in the biological importance of rhodanine derivatives. In: Varala R. Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective. Croatia: IntechOpen; 2016. p. 49-64.
37. Spicer T, Minond D, Enogieru I, Saldanha S, Allais C, Liu Q, *et al.* ML302, a novel beta-lactamase (BLA) inhibitor. *Probe Reports from the NIH Molecular Libraries Program*; 2014.
38. Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, Smith P, *et al.* Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). *Bioorg Med Chem Lett* 2004;14:3975-8.
39. Russell AJ, Westwood IM, Crawford MH, Robinson J, Kawamura A, Redfield C, *et al.* Selective small molecule inhibitors of the potential breast cancer marker, human arylamine N-acetyltransferase 1, and its murine homologue, mouse arylamine N-acetyltransferase 2.

Bioorg Med Chem 2009;17:905-18.

40. Kumar G, Parasuraman P, Sharma SK, Banerjee T, Karmodiya K, Surolia N, *et al.* Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem 2007;50:2665-75.